If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+10y-65=0
a = 4; b = 10; c = -65;
Δ = b2-4ac
Δ = 102-4·4·(-65)
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{285}}{2*4}=\frac{-10-2\sqrt{285}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{285}}{2*4}=\frac{-10+2\sqrt{285}}{8} $
| x(6)+3(0)=6 | | X÷12=11r5 | | x/4+2x/3=11/24 | | x2–4x=5 | | H(t)=-16t^2+672t | | -x²+19x=88 | | 8x+9=25x= | | 3x-50=3 | | 112=72+5x | | 12=72+5x | | (Y+23)°(2x-17)°=180° | | 5x+3/4=x+5/6 | | z+3/4=5/2 | | 2x+x-23=76 | | x+3/2=5/3 | | x-2.4=2.7 | | 5m-3(m-2)=2m-(3-7) | | 8(a-2)=64 | | 2x+5/15=2 | | 4(5-3x)+2(-x+5)=7(3+3x)-2(x–4) | | 20-(3x6)+8=x | | 5x+0.25+0.75=100 | | 3x+6=12x+3 | | y=1.6•3-4 | | 6x+7-3x-9=0 | | n+5-2n+3=0 | | 5/m=7/m-4 | | 3(n+1)-2(n+2)=0 | | 2n+9=0 | | 2/3x+15=4x+15 | | 2/3(n-4)=6 | | 10y+80=31y-25 |